Reconstitution of cytokeratin filaments in vitro: further evidence for the role of nonhelical peptides in filament assembly

نویسندگان

  • J J Sauk
  • M Krumweide
  • D Cocking-Johnson
  • J G White
چکیده

The in vitro renaturation and assembly of cytokeratin molecules to form intermediate filaments (IF) illustrates that these molecules contain all of the structural information necessary for IF information. These molecules contain nine structural domains: the amino- and carboxyterminal extra helical regions, and three conserved extra helical segments that separate four helical rod-like domains. Chymotrypsin treatment of these molecules removes the end-peptide domains and inhibits the self-assembly process. We have examined the renaturation and assembly of cytokeratin molecules using solution conditions that favor the presence of intermediate forms of IF organization. Dialysis against low salt buffers revealed the presence of bead-like chains of filaments in which the 6-8-nm beads are separated by a distance of 21 nm. These data suggest that a lateral stagger of protofilaments was among the primary events in IF assembly. Chymotrypsin-modified cytokeratin enriched for alpha-helix barely initiated a turbidity increase at conditions favoring self-assembly. Addition of small amounts of intact cytokeratin accelerated the rate and extent of this reaction. These results indicate that the nonhelical peptides on intact cytokeratin potentiate the assembly of IF by orientating the stagger of laterally associated protofilaments.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Do the ends justify the mean? Proline mutations at the ends of the keratin coiled-coil rod segment are more disruptive than internal mutations

Intermediate filament (IF) assembly is remarkable, in that it appears to be self-driven by the primary sequence of IF proteins, a family (40-220 kd) with diverse sequences, but similar secondary structures. Each IF polypeptide has a central 310 amino acid residue alpha-helical rod domain, involved in coiled-coil dinner formation. Two short (approximately 10 amino acid residue) stretches at the ...

متن کامل

Deletions in epidermal keratins leading to alterations in filament organization in vivo and in intermediate filament assembly in vitro

To investigate the sequences important for assembly of keratins into 10-nm filaments, we used a combined approach of (a) transfection of mutant keratin cDNAs into epithelial cells in vivo, and (b) in vitro assembly of mutant and wild-type keratins. Keratin K14 mutants missing the nonhelical carboxy- and amino-terminal domains not only integrated without perturbation into endogenous keratin fila...

متن کامل

Identification of the major physiologic phosphorylation site of human keratin 18: potential kinases and a role in filament reorganization

There is ample in vitro evidence that phosphorylation of intermediate filaments, including keratins, plays an important role in filament reorganization. In order to gain a better understanding of the function of intermediate filament phosphorylation, we sought to identify the major phosphorylation site of human keratin polypeptide 18 (K18) and study its role in filament assembly or reorganizati...

متن کامل

Tailless keratins assemble into regular intermediate filaments in vitro.

To study the influence of the non alpha-helical tail domain of keratins in filament formation, we prepared a truncated keratin 8 mutant, K8/tailless. Using site-directed in vitro mutagenesis we introduced a stop codon in the position coding for amino acid number 417 of the K8/wild-type sequence, thereby deleting 86 amino acids of the non alpha-helical tail domain but leaving the consensus seque...

متن کامل

The roles of K5 and K14 head, tail, and R/K L L E G E domains in keratin filament assembly in vitro

Type I and type II keratins form obligatory heterodimers, which self-assemble into 10-nm intermediate filaments (IFs). Like all IF proteins, they have a central alpha-helical rod domain, flanked by nonhelical head and tail domains. The IF rod is more highly conserved than head and tail, and within the rod, the carboxy R/K L L E G E sequence is more highly conserved than most other regions. Muta...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The Journal of Cell Biology

دوره 99  شماره 

صفحات  -

تاریخ انتشار 1984